Mathematics Fasttrack

Date:

# fast-track mathematics

 

1. The graph of a quadratic polynomial $p(x)$ passes through the points $(-6,0),(0,-30)$, $(4,-20)$ and $(6,0)$. The zeroes of the polynomial are:
(a) $-6,0$
(b) 4,6
(c) $-30,-20$
(d) $-6,6$
[CBSE SQP 2024]
Ans. (d) $-6,6$
Explanation: The quadratic polynomial passes through the points $(-6,0)$ and $(6,0)$, so its zeroes are $x=-6$ and $x=6$.

2. A quadratic polynomial having zeroes $-\sqrt{\frac{5}{2}}$ and $\sqrt{\frac{5}{2}}$ is:
(a) $x^2-5 \sqrt{2} x+1$
(b) $8 x^2-20$
(c) $15 x^2-6$
(d) $x^2-2 \sqrt{5} x-1$
[CBSE SQP 2024]
Ans. (b) $8 x^2-20$
Explanation: If $x=-\sqrt{\frac{5}{2}}$ and $x=\sqrt{\frac{5}{2}}$ are zeroes of the quadratic polynomial, then $\left(x+\sqrt{\frac{5}{2}}\right)$ and $\left(x-\sqrt{\frac{5}{2}}\right)$ are factors so their product will give us the quadratic polynomial. $\therefore k\left(x+\sqrt{\frac{5}{2}}\right)\left(x-\sqrt{\frac{5}{2}}\right)$, where $k$ is any arbitrary constant.
$$
\begin{aligned}
\Rightarrow k\left[(x)^2-\left(\sqrt{\frac{5}{2}}\right)^2\right] & {\left[\because(a+b)(a-b)=a^2-b^2\right] } \\
& =k\left[x^2-\frac{5}{2}\right] \\
& =k\left[\frac{2 x^2-5}{2}\right] \\
& =\frac{k}{2}\left(2 x^2-5\right)
\end{aligned}
$$

For $k=8$ quadratic polynomial is:
$$
\begin{aligned}
& =\frac{8}{2}\left(2 x^2-5\right) \\
& =4\left(2 x^2-5\right) \\
& =8 x^2-20
\end{aligned}
$$

Previous article
Next article

LEAVE A REPLY

Please enter your comment!
Please enter your name here

Share post:

Subscribe

spot_imgspot_img

Popular

More like this
Related

Child pedagogy 100 Questions

1. Which of the following statement about development is...

New post

37. Which among the following are not the learning...

Heredity & environment

1. Parents should play a _________ role in the...

English pedagogy

1. The Constructivist Approach to learning means (CTET 2011) (a)...